1.7 Exploring Operations with Functions

A Arithmetic Combinations

Consider two functions f(x) and g(x). Then the sum f+g, difference f-g, product fg and the quotient f/g are defined as follows:

$$(f+g)(x) = f(x) + g(x)$$

$$(f-g)(x) = f(x) - g(x)$$

$$(fg)(x) = f(x)g(x)$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, \quad g(x) \neq 0$$

Ex 1. Given $f(x) = x^2 - 1$ and $g(x) = 2\sqrt{x-1}$, find:

a)
$$(f+g)(1)$$

b)
$$(f - g)(2)$$

c)
$$(fg)(5)$$

d)
$$\left(\frac{f}{g}\right)(1)$$

e)
$$(f + g)(x)$$

f)
$$(f - g)(x)$$

g)
$$(fg)(x)$$

h)
$$\left(\frac{f}{g}\right)(x)$$

B Domain

The domain of f+g, f-g, and fg is $D_f\cap D_g$ (the intersection between the domain of f and the domain of g).

The domain of $\frac{f}{g}$ is $\{x \in D_f \cap D_g \mid g(x) \neq 0\}$.

Ex 2. Given $f(x) = x^2 - 1$ and $g(x) = \sqrt{x-2}$, find the domain of the following arithmetic combinations:

a)
$$(f+g)(x)$$

b)
$$(f - g)(x)$$

c)
$$(fg)(x)$$

d)
$$\left(\frac{f}{g}\right)(x)$$

e)
$$\left(\frac{g}{f}\right)(x)$$

Ex 3. The function f has the x-intercepts -1, 1, and 3 and the y-intercept is 4. The function g has the x-intercepts -2 and -1 and the y-intercept is 1. Find the x-intercepts and the y-intercept of the following arithmetic combinations:

a)
$$(fg)(x)$$

b)
$$\left(\frac{f}{g}\right)(x)$$

c)
$$\left(\frac{g}{f}\right)(x)$$

Reading: Nelson Textbook, Pages 54-56

Homework: Nelson Textbook, Page 56: #1a, 2a, 3a, 4a, 7